Accuracy Assessments

Practical Exercise

General Information

Goal:

• Assess the accuracy of a supervised classification

Content:

- Accuracy assessment
- Improving classification results.

Software Requirements:

- QGIS
- The "dzetsaka" QGIS plugin (see instructions in the practical exercise Part 1)
- The data for this practical which can be downloaded from Canvas.

New for Part 2:

• The "AcATaMa" QGIS plugin (see instructions below).

Data to be used:

- ESACCI-LC10-Map-20m-2016-MLPractical.tif Land cover dataset raster
- ESACII-LC-colormap.clr QGIS style for the Land Cover dataset
- S2_20170101_Year_20m-MLPractical.tif Satellite imagery
- MLPractical_Training_Points.geojson Training points
- CCI_L10_Training_Points_Style QGIS style for the training points

New for Part 2:

- Your classification layer from Part 1 (you can use MLPractical_ExampleClassification.tif if you didn't save yours)
- MLPractical_Reference_Points.geojson Testing data points
- MLPractical_Reference_Points_atacama.yml Description of testing points for the Atacama plugin.

Software Installation

We will be using QGIS as you installed in Topic 2. You will also need to install the dzetsaka plug-in in QGIS (instructions in the Machine Learning Part 1 practical exercise).

We also need the "Accuracy Assessment of Thematic Maps" plugin. In the top menu of QGIS, select "Plugins" \rightarrow "Manage and Install Plugins". Then type **AcATaMa** in the search bar. Select it and then install (or upgrade) the plugin. After it is correctly installed you should see it under the list of installed plug-ins and in the Plugins menu like in the screenshot below.

A detailed description of it can be found here: <u>https://smbyc.github.io/AcATaMa</u> (last accessed 07.06.2021).

Datasets

Reference data

We will be using Land Cover data from the **CCI Land Cover dataset**. It has a spatial resolution of 20m and was generated from one year of Sentinel 2A observations from December 2015 to December 2016. More information can be found here: <u>http://2016africalandcover20m.esrin.esa.int/</u>. A part of Khartoum was subsetted for this practical exercise.

Input data

The classification will use a **Sentinel 2a image** mosaic of 2017. The input bands 2 – 8A are available.

Training samples:

To train the classifier, 150 points were randomly selected and labeled according to the CCI land cover layer.

Testing samples:

To test the classification results, 100 points were randomly selected and labeled according to the CCI land cover layer.

Instructions

- 1. Load your QGIS project from Part 1 (or start a new project and load all of the layers listed under "Data to be Used" above.
- 2. The AcATaMa plug-in has a native .yml file. You will need to change the file to fit your filenames. Open **MLPractical_Reference_Points.yml** in Notepad. Change the filenames highlighted in the image below to match the names and paths to the classification raster ("thematic_raster") and the reference points ("sampling_layer").

I MLPractical Reference Points - Notepad	-		\times
File Edit Format View Help			
thematic_raster: {band: 1, nodata: -1, path: 'C:\Users\GevaertCM\Desktop\TMT+ Sudan ML slides\Practicals\Final data and instructions\Part 2\MLPractical_Examp	leClass	ifica	ti ^
sampling_layer: C:\Users\GevaertCM\Desktop\TMT+ Sudan ML slides\Practicals\Final data and instructions\Part 2\MLPractical_Reference_Points.geojson			
dialog_size: lipython/tuple [1920, 1001]			
grid_view_widgets: {columns: 2, rows: 2}			
Current_sample_100.99			
is completed true			
view widers confir:			
0: {laver name: ESAACCI-LC-LC10-Map-20m-2016-MLPractical. render file path: 'C:\Users\GevaertCM\Desktop\TMT+			- 7
Sudan ML slides\Practicals\BAckground data\Sa 2017 test\ESAACCI-LC-LC10-Map-2016-MLPractical.tif',			
<pre>scale factor: 1.0, view_name: ''}</pre>			
1: {layer_name: S2_20170101_Year_20m-MLPractical, render_file_path: 'C:\Users\GevaertCM\Documents\S2_20170101_Year_20m-MLPractical.tif',			
scale_factor: 1.0, view_name: ''}			
2: {layer_name: MLPractical_trainingPoints, render_file_path: 'C:\Users\GevaertCM\Desktop\TMT+			
Sudan ML slides\Practicals\BAckground data\Sa_2017_test\MLPractical_trainingPoints geojson',			
scale_factor: 1.0, view_name: ``}			
3: {layer_name: OSM Standard, render_tile_path: null, scale_tactor: 1.0, view_name: ``}			
Classification_outcons:			
1. (club. modadod , name, nee cover areas, thematic_liss. 1 }			
3: (color: "#ffha@", name: Grassland, thematic class: '3')			
4: {color: '#fff64', name: Cropland, thematic class: '4'}			
5: {color: '#00dc82', name: Vegetation aquatic or regularly flooded, thematic class: '5'}			
6: {color: '#ffebaf', name: Lichens mosses / sparse vegetation, thematic_class: '6'}			
7: {color: '#fff5d7', name: Bare areas, thematic_class: '7'}			
8: {color: '#c31400', name: Built up areas, thematic_class: '8'}			
9: {color: '#0046c8', name: Open water, thematic_class: '10'}			
points:			
0: {classif_id: 3, shape_id: 9}			
1: $\{(1assin = 1a; 3, snape = 1a; 1b\}$			
2: {classiT_10: 8, shape_10: 2>}			
2. [(103511_10, 0, 3)10He_10, 32]			
			>

 Open the AcATaMa plug-in (at the top 'Plugins → Accuracy Assessment of Thematic Maps → AcATaMa'). Select your classification result under the "Thematic" tab. Go to "Classification" tab and select
MIPractical Peteronae Points as the Sampling File and click on "Load State"

MLPractical_Reference_Points as the Sampling File and click on "Load State" and open **MLPractical_Reference_Points.yml**.

ATaMa					
Thematic Sampling		Classification	Accuracy Asses	sment	
Sampling F	ile				
Select/bro	owse the samp	ling file (points sh	ape) for make the	classification:	
° MLPr	actical_Refere	nce_Points		• 0	
Classificati	on Status				
		100/100 samples	classified		
		Classification co	mpleted		
Load/Sa	ve				
Restore	/Save the sett	ings and classifica	tion status:		
	,				
			Load state	Save state	
Complian C	la colfica tian				

4. Finally – look at the confusion matrix. Go to "Accuracy Assessment → Open the accuracy assessment results". Answer the questions below.

ADVANCED: The dzetsaka plug-in also lets you do different types of classifications. Try a different classification and compare the results by performing an accuracy assessment with AcATaMa.

ADVANCED: Try making your own reference data. Use the "Sampling" tab and the "Classification" tab to randomly generate samples and assign them the correct label.

Analysis questions

- What is the overall accuracy of your result?
- Which class has the highest producer's accuracy? And which has the highest user accuracy?
- Which classes are well classified and which are more confused?
- Compare the reference CCI Land cover map to what you see in the Sentinel-2 image. Do you think it is good?
- How do you think you can improve the classification? \rightarrow try it!