Introduction to Image Classification

Adapted from presentation prepared by **Charlotte Flasse** Université Libre de Bruxelles

MAP SUDAN

ITC

Introduction

- Supervised classification
- Classification algorithms
- Accuracy assessment

□ Introduction

Online training – 129^{stt}l^hulluvn2e020121

EAMAP Image classification process

- **1.** Select images
- 2. Define clusters in feature space
 - Unsupervised e.g. ISODATA, k-means
 - Supervised e.g. rule-based / provide training data
- **3.** Select classification algorithm
 - Box classifier
 - Minimum distance to means
 - Machine learning (Maximum likelihood, RF, SVM)
 - Deep learning (CNN)
- **4.** Run classification
- 5. Validation of the result

Supervised classification a. With training data

Supervised classification

- User must provide training data (a priori knowledge)
- Classification algorithm learns from training data to find patterns and translate this into classes

EAMAP SUDAN Provide training samples

Training samples should form clusters that:

Represent the variability within each

class

- Have enough samples per class
- Do not overlap with other clusters

Provide training samples

- Obtained directly in the field, or independent data, or interpreting an image.
- Taken over small zones of the image
- Training sample quality impacts classification

EAMAP SUDAN Training samples

Advantages:

- Analyst controls information classes
 - Specific purpose; change detection

Disadvantages

- No "natural" spectral classes (imposed)
- Spectral class may be heterogeneous
- Training data may not be representative

Classification algorithms

Online training – 129^{stt} I^hulluvn2e020121

Parametric (assumes normal distribution of data)

- Minimum distance to means (MDM)
- Maximum likelihood

Non-parametric (doesn't assume normal distribution)

- Box classifier (parallelepiped)
- Random forest (RF)
- Support Vector Model (SVM)
- Artificial Neural Networks (ANN)

SUDAN

Box classifier

Also known as the parallelepiped classifier

Advantages

- Computationally efficient
- Mathematically simple

Partitioned feature space

In which cluster would point 1 go?

Disadvantages

Class overlap

Insensitivity to covariance (shape & orientation of classes)
Source : Lillesand T., Kiefer R. W., Chipman J. (2015),
Remote Sensing and Image Interpretation, Wiley and sons, 736p, ISBN: 978-1-118-34328-9.
Online training – 1st July 2021

Box

3and 3 digital number

Minimum distance to means (MDM)

Advantages

SUDAN

- Computationally efficient
- Mathematically simple
- Disadvantages
- Cluster mean may be far
- Insensitive to class variability

Without threshold distance

With threshold distance

- Sensitivity to variance and covariance:
 - Assumption: training data = Gaussian distribution
 - Generally reasonable for common spectral response distributions
 - Mean values and covariance matrix
 - Probability density function
- Probability of x to belong to each category
- ☐ Highest probability (most *likely* class) → assigned to that category

Maximum likelihood

Other machine learning

- Machine learning tools that are more robust with non-normal distributions:
- Random forest (RF)
- XGBoost (Extreme Gradient Boosting)
- Support vector machines (SVM)

Machine Learning >< Deep Learning

Machine Learning

Input

Feature extraction + Classification

© Dey (2018) - TowardDatascience

Output

Spatial unit <> Features <> Classification method

Which method to classify features

Rule-based

 Machine learning (supervised or unsupervised)

• Deep learning

Accuracy Assessment

Online training – 129^{stt}l^hulluvn2e020121

EAMAP SUDAN Accuracy assessment

- Sources of errors
 - Mixels, pre-processing, classification, human
 - NOT distributed randomly
- Essential !
- Reference data
 - □ Field, high resolution imagery, ...
 - As good as possible
 - Might be imperfect
- Comparison: classification vs. reference data
 - Accuracy assessment

		Reference Data			
		Water	Forest	Urban	Total
Classified Data	Water	21	6	0	27
	Forest	5	31	1	37
	Urban	7	2	22	31
	Total	33	39	23	95

 95 sample reference points in total

 Compare reference data with classified data for these samples

Error matrix: Overall accuracy (OA)

© Humboldt

SUDAN

- Diagonal = correctly classified samples
- OA = total of correctly classified pixels / total samples

Error matrix: Overall accuracy (OA)

 Diagonal = correctly classified samples

= 77.9%

© Humboldt

DEAMAP

SUDAN

$$OA = 21 + 31 + 22$$

$$95$$

EAMAP SUDAN Error matrix

- Overall accuracy = GLOBAL accuracy measure BUT
 - Usually the errors in a classification are not random
 - Interesting to have per-class accuracy measures:
 - User's accuracy
 - If classified as grass in the image, how likely is it that it is really

grass on the ground?

Producer's accuracy

• If grass on ground, is it correctly classified as grass in the Online training – 1st July 2021

			Referer	ice Data	а			
		Water	Forest	Urban	Total			
Classified Data	Water	21	6	0	27			
	Forest	5	31	1	37			
	Urban	7	2	22	31			
	Total	33	39	23	95			

For water class:

 UA = total correctly classified pixels / row total

© Humboldt

User accuracy for Water class =

 $\frac{21}{27} = 78\%$

User's accuracy + Commission error

			Referer	ice Data	ata			
		Water	Forest	Urban	Total			
Classified Data	Water	21	6	0	27			
	Forest	5	31	1	37			
	Urban	7	2	22	31			
	Total	33	39	23	95			

For water class:

 Commission error = 100 – UA

= 78%

© Humboldt

SUDAN

User accuracy for Water class =

<u>21</u> 27

Producer's accuracy

			Reference Data			
		Water	Forest	Urban	Total	
Classified Data	Water	21	6	0	27	
	Forest	5	31	1	37	
	Urban	7	2	22	31	
	Total	33	39	23	95	
	Total	33	39	23	95	

For water class:

PA = total correctly classified pixels / column total

Producer accuracy for Water class

<u>21</u> 33

= 64%

Producer's accuracy + Omission error

			Reference Data			
		Water	Forest	Urban	Total	
Classified Data	Water	21	6	0	27	
	Forest	5	31	1	37	
	Urban	7	2	22	31	
	Total	33	39	23	95	
© Humboldt						

For water class:

- Omission error = 100 – PA
 - = 100 64 = 36%

User accuracy for Water class =

 $\frac{21}{33} = 64\%$

