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IDEAMAP

SUDAN DEPRIVATION: A MULTI-
DIMENSIONAL CONCEPT

= Households might be deprived in terms of
durable housing material or access to basic

services (e.g., water, education,..).

= Communities might be deprived in terms of
infrastructure or availability of open

spaces.
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DEPRIVATION: A MULTI-DIMENSIONAL CONCEPT
S

Benefits for Mapping Deprivation

Explore the geographical patterns of
deprivation

= Identifying the most deprived areas

= Explore the domains/factors of deprivations
in different areas

= Compare administrative areas (e.g., states,
localities)

= Dynamics of deprivation over time
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The English Index of Multiple
Deprivation (IMD)

based on 39 indicators, organized
across seven domains,:

Switch domain to: |un|b|-|i|+ 6°|.|‘IM fi 2019 m

Viewing Index of Multiple Deprivation (IMD) 2015 m

ilndices of Deprivation: 2019 and 2015

the index of multiple deprivation (IMD2019) - seven domains of deprivation
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Example - Multiple Deprivation Index

There are 7 domains of deprivation, which combine to create the Index of Multiple Deprivation (IMD2019):

Education
(13.5%)

Measures the lack of
attainment and skills in

the local population

Barriers to Housing
& Services

(9.3%)

Measures the physical
and financial
accessibility of housing
and local services

Health
(13.5%)

Measures the risk of
premature death and the
impairment of quality of
life through poer physical
or mental health

Living Environment
(9.3%)

Measures the quality of
both the ‘indoor’ and
‘outdoor’ local
environment
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Network

SUDAN Combining “Slum” mapping approaches

Field Mapping Census & Survey
Computer Digitising imagery
models is




What do we envision achieving together?

Improved data on slums

) Identification of slum areas
and deprived areas

Deprivation Classification
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What do we envision achieving together?

Characterisation of slum areas
Improved data on slums

H Area Flood Risk Child Stunting Temperature
and deprl\IEd areas in Settlement Last Year
40 35% Stunted 40
30 2% /\ Settlement
30 _——’/\
0] 20% City

Not Stunted 2
75%

Improved access to data

and characterisation of
Rroject partners, places and priorities
communities, Cender
governments, & SES
researchers in Within Area |
Lagos, Kano and

p ? Within Area
Nairobi Housing Household E DEA  comeet
MAPS
Network

Domains or Deprivation paper:
https://doi.org/10.1016/j.compenvurbsys.2022.101770
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MAPS

Network

Project partners,
communities,
governments,
researchers in

Lagos, Kano and

Nairobi

What do we envision achieving together?

Improved data on slums

and deprived areas

Improved access to data
and characterisation of
places and priorities

Improved capacity to
use and update data to
enable change

Capacity for action planning, update and monitoring




What do we envision achieving together?

Improved data on slums
and deprived areas

Just,
equitable
and
sustainable

Improved access to data Actionsand cities that
and characterisation of interventions to provide

Project pat.‘t.ners, places and priorities effect change essential
communities, services for

governments,
researchers in
Lagos, Kano and
Nairobi

all

Improved capacity to
use and update data to 17 azens
enable change
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SUDAN Keyoutput: Network
One (or more) sets of models

Classify | Then define
binary | degree and/or
slums | type of

first | deprivation
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SUDAN Model 1: Domains combining secondary data (IdeaMapSudan)
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Data portal:


http://geonode.idea-maps.net
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Model 2: EO Models trained from area observation survey

Bangalore, India

N ! Bangalore QS DIMD

A — — O ers =
O e 9 ” -1.10 0

C NN- b-ﬁ Spd m (F)d(“\‘: Transfer learning

Classification Regression Ajami, Kuffer, Persello and Pfeffer, 2019
problem (S problem https://www.mdpi.com/2072-4292/11/11/1282
vl features e

Deprivation indices

<121 samples for training

2000 samples for training
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SUDAN Model 2: EO Models with image features (SLUMAP approach)
Nairobi, Kenya
.
Sentinel 1/2 + Labelled Deprivation Specific
+Contextual training probability of a environment
features data grid cell conditions (e.g.,

waste)
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https://doi.org/10.3390/rs13244986

SLUMAP


https://doi.org/10.3390/rs13244986
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SUDAN o del 3: Using Earth Observation Data using Advanced Al

Nairobi, Kenya

Input Data Models used Outputs Validation +
A6 - Classifical ML Maps Improvement
models Citv and - Accuracy
- Deep-learning Ity and area 4 of
stats ourpose
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Precictec vowes
o »
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Example:

Source: https://doi.org/10.1016/j.scs.2022.104033


https://www.mdpi.com/2220-9964/11/12/631
https://doi.org/10.1016/j.scs.2022.104033
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SUDAN Model 4: Training EO models trained with community knowledge

Nairobi, Kenya
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SUDAN Model 5: Transferring model

Transferring EO Models to a large set of cities
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https://pere.gis-ninja.eu/slumaps/
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SUDAN
Overview

Type of input

features (e.q., EO
“Type” of training v maps)( < Al Model

data in models complexity
U Open geospatial
O Ground photos data Deep-
O Field data O Municipal data learning
O Modelled from O Commercial Transfer
secondary data images learning
O Community O Open and free Classical ML

knowledge EO images
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