

Geospatial Big Data and Cloud Computing

Presenter: Dr. Eng. Serkan Girgin

University of Twente, Faculty ITC

Center of Expertise in Big Geodata Science

Geospatial data is getting bigger and more difficult to analyse

- Satellites, drones, vehicles, social networks, mobile devices, cameras, etc. generate **vast amount** of (open) geospatial data.
- Numerous methods and (open-source) applications have been developed to enable discovery, delivery, analysis, and visualization of geospatial data.
- However, large and complex geospatial data sets are difficult to handle using **conventional systems and methods**.
- Data processing and analysis tasks are **time consuming**, sometimes even not possible, if they are performed on laptops or local workstations.

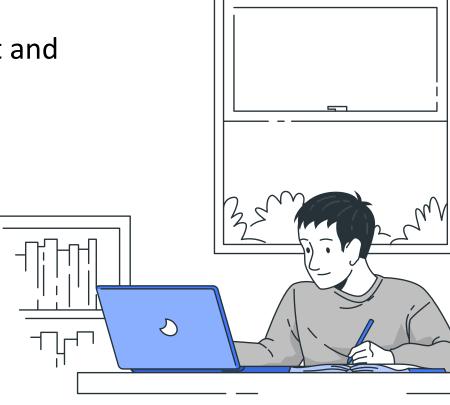
Solutions require expert know-how and infrastructure

- Local and regional studies with medium size data Analyses can be done faster by parallel computing on a workstation
- Machine learning and AI studies with medium size data Analyses require special processing units (e.g., GPU/TPU) due to computational complexity
- National, continental, and global studies with big data Analyses require distributed computing on a computing cluster due to computational complexity and/or large volume of data

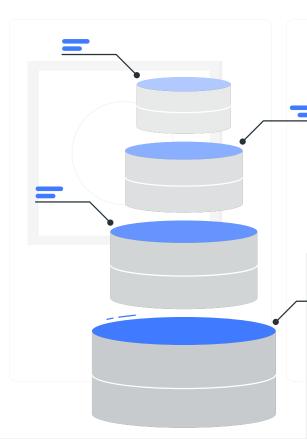
Cloud computing is on-demand availability of computer system resources, especially data storage and computing power, without direct active management by the user

for displacement duration solutions and socioeconomic reconstruction in Khartoum, Sudan

Computing is moving to the Cloud, so is geocomputing


- Developments in infrastructure, both hardware and software, gave a **big push** to data processing and analysis capabilities.
- Scalable and affordable computing is available through:
 - Open-source systems that allow computing clusters on commodity hardware
 - Proprietary cloud-based data storage and computing services
- However, it is **challenging to choose** the right solution(s) depending on the nature of geospatial data and analysis needs.
- Using the solutions usually requires a transition in modus operandi.

Not everyone requires cloud computing and big data, but...


- Institutions are usually heterogeneous with respect to interests and needs.
- For some people cloud computing and big data are not and probably will not be relevant or interesting.
- Even if there is no apparent need or interest, it is still important to have at least a basic understanding of these topics, because they are becoming key components in the geospatial domain.
- This should be an institutional priority.

Cloud computing has a few distinctive features

- On-demand self-service: provision of computing capabilities as needed without requiring human interaction.
- **Broad network access**: availability over the Internet with standard access mechanisms for different client platforms (e.g., tablets, laptops, mobile phones).
- **Resource pooling**: dynamic assignment and reassignment of physical and virtual resources according to consumer demand.
- Rapid elasticity: capability to scale rapidly outward and inward proportionate to consumer demand.
- **Measured service**: accurate monitoring, control, and reporting of resource and service utilization.

for displacement duration solutions and socioeconomic reconstruction in Khartoum, Sudan 23 February 2023, Khartoum

The features sound nice, but status quo is far from ideal

- Existing experience is **not widespread**, and difficulties exist in identifying the cases where cloud computing **can play a role**.
- Challenges exist in proper selection and efficient use of cloud computing methods, tools, and services.
- Available platforms and services are little used mainly due to high cost and limited domain-specific technical support.
- There is a high interest in getting training on how to (better) use cloud computing technology.
- There is also interest in **learning how** the technology is applied to solve domain-specific problems (e.g., what others do?)

The landscape is large and complex

Source: https://mattturck.com/data2021/

Principal needs are usually similar for the different user groups

- State-of-the-art should be actively communicated to the users.
- Proficiency of the users on cloud computing should be improved.
- Easy-to-use and efficient cloud computing infrastructure should be made available for training and work purposes.
- Workflows should be enhanced and improved with cloud computing technology where relevant.
- Ad hoc technical support and advise should be provided.
- Knowledge and good practices on better use of technology should be transferred between partner institutions.

It is crucial to build a community that is self-motivated to learn, practice more, and share knowledge and experience!

Integrated Deprivation Area Mapping System

Public Lecture

23 February 2023, Khartoum

for displacement duration solutions and socioeconomic reconstruction in Khartoum, Sudan

Rule One Use the right tools!

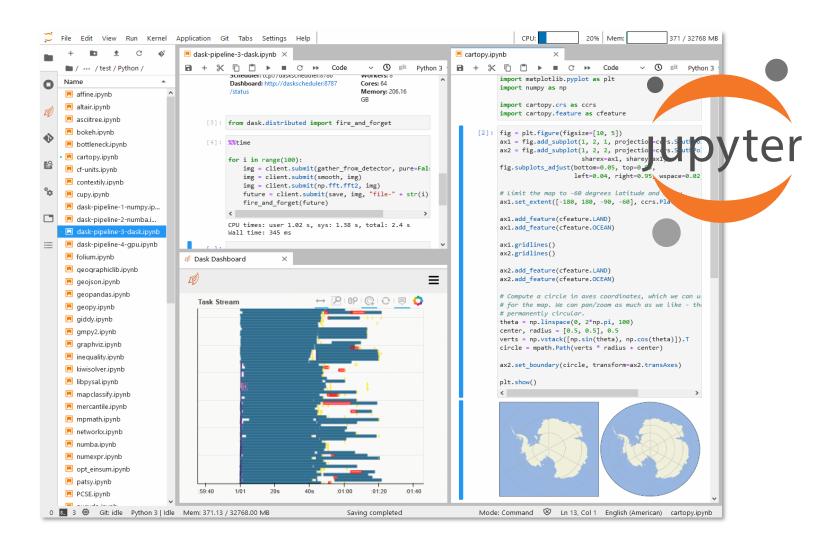
Infrastructure as a Service (laaS) – on demand virtual machines

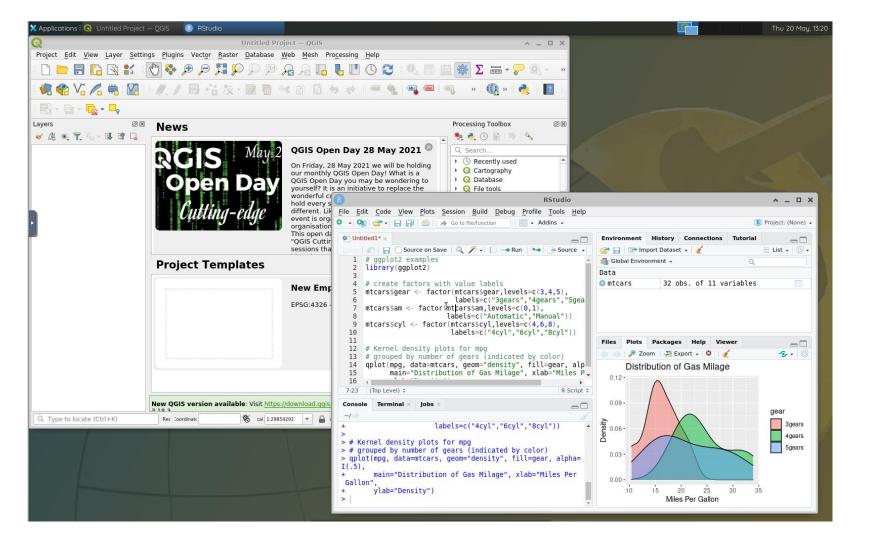
- Provider supplies the infrastructure.
- User deploys and run arbitrary software, including operating system.
- Examples
 - Amazon AWS
 - Microsoft Azure
 - Google Cloud
 - ESA DIASs
 - National Research Clouds

Low level: Fine control on resources, custom system design, optimum performance, but difficult to manage, requires expertise!

Platform as a Service (PaaS)

- Provider supplies the infrastructure, services, and tools that allow the user to deploy applications.
- User deploys applications and alters settings of the application hosting environment.
- Examples
 - Google Earth Engine
 - Microsoft Planetary Computer
 - ITC Geospatial Computing Platform
 - Google Colab
 - Amazon SageMaker


Medium level: Limited control on resources, custom workflow design, good performance, but requires programming skills!


Project Jupyter is a gamechanger for interactive computing

Free software, open standards, and web services for interactive computing across various programming languages

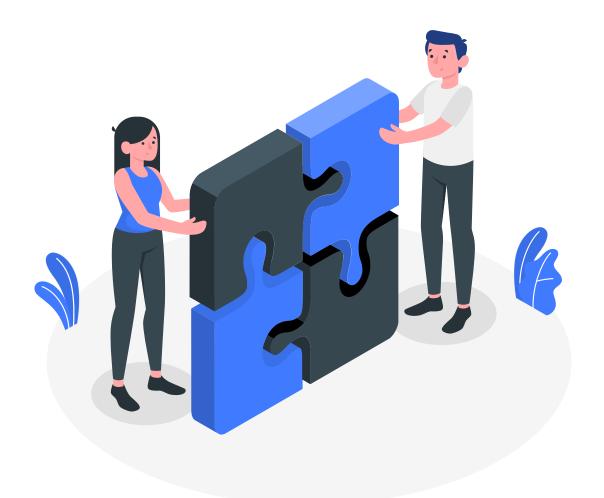
jupyter.org

Remote desktop connection allows conventional access

Software as a Service (SaaS) – on demand application software

for displacement duration solutions and socioeconomic reconstruction in Khartoum, Sudan

- Provider supplies the infrastructure that run the applications.
- User uses provided applications through an interface.
- Examples
 - ArcGIS Online
 - CartoDB
 - Mapbox
 - R Studio Cloud


High level: Easy to use, (usually) optimum performance, but no control on resources, usually paid!

There are also many other ..aaSs!

- Function as a service (FaaS)
- Data as a service (DaaS)
- Data Processing as a service (**DPaaS**)

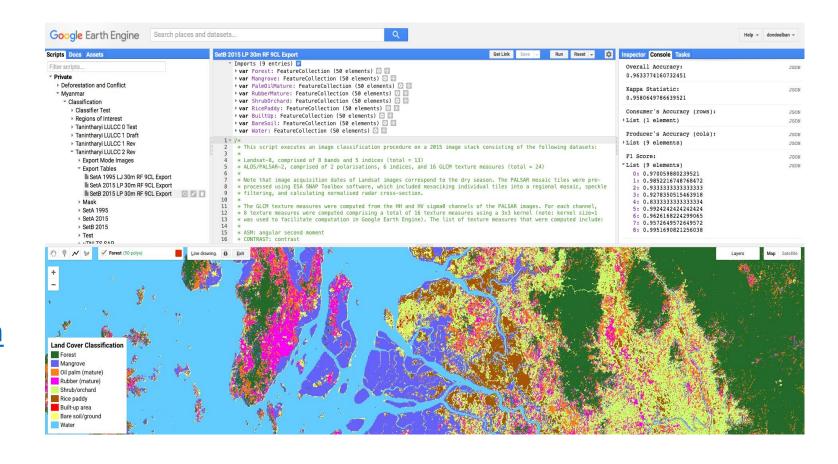
•

There are also many cloud service providers!

- Common features
 - Virtual machines
 - Cloud storage
 - Open-source software
 - Open datasets

Different features

for displacement duration solutions and socioeconomic reconstruction in Khartoum, Sudan


- Azure Machine Learning Platform
 Cloud-based environment to train, deploy, automate, manage ML models
- Azure Data Science Virtual Machines Geo Al Data Science VM with ArcGIS
- EMR Cloud-native Big Data Platform EC2 + S3 clusters without provisioning, with OSS (Hadoop, Spark, etc.)
- Google Compute Engine Cloud TPU (eg. ResNet-50, 90 ep.: 8 V100 GPU: 216 min, Cloud TPU V2: 7.9 min)
- BigQuery

BigQuery ML: create and execute ML models using standard SQL BigQuery GIS: analyze and visualize geodata by using standard SQL

Google Earth Engine is a gamechanger for geospatial computing

Combination of a multi-petabyte catalog of EO imagery and geospatial datasets with planetary-scale analysis capabilities available for free*.

earthengine.google.com

Geocomputing on local cloud can be efficient and cost effective

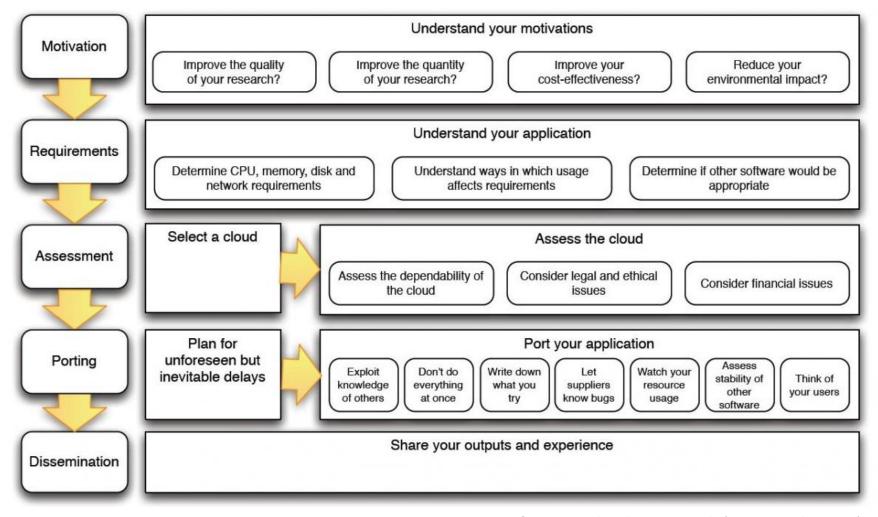
for displacement duration solutions and socioeconomic reconstruction in Khartoum, Sudan

- ITC Geospatial Computing Platform provides GPU-enabled general purpose (8 vCPU, 32 GB RAM) and big data (72 vCPU, 768 GB RAM) units with large storage, analysis ready data, ready-to-use interactive and desktop software (1500+ packages), and shared workspaces.
- Currently serves 850+ registered users.
- Provided 225,000+ hours of computing since January 2021.
- Already returned 15+ times the investment costs.
- Monthly cost is < 200 Euro.

The platform has also been used by IDEAMAP SUDAN https://crib.utwente.nl

Overall, cloud computing has many benefits

- Better computing infrastructure (e.g., more CPUs, GPUs, RAM)
- Better **storage** (e.g., large, replicated)
- Better scalability (e.g., more resources on-demand)
- Improved workflow **performance** due to co-location of data and computing (i.e., no download)
- Improved collaboration (e.g., direct access to same assets)
- Improved resource utilization (e.g., less idle time)
- No cost for investment and maintenance (if remote cloud)
- Low cost for extensive use (if local cloud)


A few suggestions for newcomers

- **Ensure familiarity** with the cloud computing technology through short talks and lectures.
- Improve know-how by participating tool- and technology-specific training
- **Try and use** the infrastructure and platforms available for free or through partner organizations.
- Follow a hybrid approach (local + cloud) to maximize the benefits.
- Ask for technical and scientific support for better implementation and integration of the technology.
- Ask for guidance for the planning of future activities.
- Share your knowledge and good practices with your colleagues (e.g., for cost-effective and efficient use).

Following best practices facilitates moving to the Cloud

Source: Best practice for using cloud in research (Hong et al., 2018)

for displacement duration solutions and socioeconomic reconstruction in Khartoum, Sudan

Subscribe to our newsletter to stay informed!

Big Geodata Newsletter

https://itc.nl/big-geodata/newsletter/

Subscribe Now

Follow us to stay informed!

https://itc.nl/big-geodata

crib-itc@utwente.nl

@BigGeodata

CRIB YouTube Channel

Contact

dr.ing. Serkan Girgin MSc
Senior Researcher
Head of Center of Expertise in
Big Geodata Science
s.girgin@utwente.nl
+31 53 489 55 78